技术平台
原位检测与过程分析(以下简称ICPA)技术平台是以RC HP-1000A型反应量热仪为基础,并搭载在线分子光谱仪、在线粘度计、在线pH计、在线颗粒度检测仪等探头式原位检测仪器的高技术多参量测控平台。通过对上述仪器组件在硬件与软件层面的集成,可实现化学反应工艺过程模拟、多参量测控、数据分析与联用等功能。其中,ICPA技术平台的多参量测控功能可原位采集化学反应过程中体系温度、压力、反应热、组分、pH值、粘度和颗粒度等参量的实时数据,从而高效获取化学反应特征信息。由于无须进行取样、样品前处理等操作,与传统的离线分析手段相比,ICPA技术具有不破坏样品、不引入干扰因素、不丢失过程信息等优势,可用于反应机理研究、反应风险评估、工艺参数快速优化等。另外,由于具备高自动化、高数据通量的特点,该技术是未来实现全自动化实验室、智能工厂的重要基础。
应用案例
有机化学中从1,4-二羰基化合物产生吡咯、呋喃或噻吩的反应称为Paal-Knorr反应。取代的吡咯、呋喃和噻吩是许多具有生物活性的天然产物和药物活性成分(APIs)的基本结构单元,因此Paal-Knorr反应是一类比较有价值的合成方法。对于利用胺类与1,4-二羰基衍生物合成吡咯的Paal-Knorr反应,一般认为半缩醛胺中间体的环化是反应的决速步骤,因此测定该中间体的生成与变化是研究反应机理的关键。本实验以2,5-己二酮为底料、滴加乙醇胺的方式进行Paal-Knorr吡咯合成。利用ICPA技术平台分子光谱(中红外)原位检测功能,可表征反应过程中体系红外吸收光谱随时间变化。通过对全谱图进行基线校正和特征峰趋势分析,可以识别出反应体系各组分浓度的变化,其中波数1110 cm-1处的吸收峰呈现先上升后下降的趋势,且符合仲胺基上C-N键的伸缩振动峰位置,可初步识别为半缩醛胺中间体的特征峰。
图4 (a) Paal-Knorr吡咯合成反应红外光谱随时间变化;(b) 关键特征峰变化趋势
利用特征峰强度变化可对反应物、产物和中间体的浓度及相对浓度变化过程进行半定量分析。可以发现,反应物和产物的相对浓度之和在1110 cm-1吸收峰出现前后恒等于1,且在反应过程中出现的下降趋势与1110 cm-1吸收峰的变化趋势相吻合。由此可以确认1110 cm-1是半缩醛胺中间体的特征峰。确认中间体的特征峰之后,可以通过原位采集红外数据高效研究工艺条件对反应过程的影响。如图6所示,提高反应温度会抑制中间体的生成,验证了半缩醛胺中间体脱水是Paal-Knorr反应的决速步骤,温度对这一步反应速率的影响更显著;另外,投料顺序也影响反应过程,以乙醇胺为底料、滴加2,5-己二酮的反应方式没有明显的中间体生成。
图6 (a)反应温度与(b)投料顺序对中间体生成的影响
结语
ICPA技术是现代测控技术、仪器科学和现代计量学的结合体,是研究化学反应机理与工艺开发的新兴手段。后续我们将介绍更多ICPA检测方法以及该技术在医药、农药、聚合物、新能源等行业研发与生产中的应用实例。